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Abstract. There is evidence that the human contrast-sensitivity function (CSF) is mediated by the
spatiotemporal characteristics of magno and parvo neurons early in the visual pathway. In this
study we use a measure of contrast gain derived from simple reaction times, to investigate the neural
substrates of suprathreshold performance. The results reveal the activity of two mechanisms
having distinctly different contrast-gain characteristics. Comparing these to neurophysiological
data, we find that the magnocellular system dominates close-to-threshold detection and probably
forms the basis of the achromatic CSF, whereas the parvocellular system dominates detection at
higher contrasts, when the magnocellular system saturates.

1 Introduction
There is compelling physiological evidence that in the primate retino-cortical pathway
there are at least two distinct channels, originating from the two main classes of retinal
ganglion cells, the magno and parvo cells, which project, respectively, to the magnocel-
lular (M) and parvocellular (P) layers of the lateral geniculate nucleus (LGN) (Rodieck
et al 1985; Wiesel and Hubel 1966). Beside the highlighted differences in several ana-
tomical and functional characteristics (Kaplan and Benardete 2001; Kaplan et al 1990;
Lee 1996; Lund et al 1995; Perry et al 1984; Yeh et al 1995), the two detecting channels
show characteristic signatures in the processing of luminance contrast: M neurons have
high sensitivity to luminance contrast (ie high contrast gain; Kaplan and Shapley 1986),
but their responses saturate at fairly low contrasts, whereas P neurons have relatively
poor sensitivity to achromatic contrast, but show a higher degree of spatial and tem-
poral linearity (Hicks et al 1983; Kaplan and Shapley 1986; Lee et al 1990; Sclar et al
1990). This constellation of different properties has led to the notion that these two
streams of visual information remain largely segregated in the striate cortex V1 and
possibly beyond, and are engaged in parallel processing of different and complementary
aspects of the visual scene (DeYoe et al 1994; Livingstone and Hubel 1988).

Psychophysical studies that rely on threshold detection, eg the contrast-sensitivity
function (CSF), are considered to reflect the spatiotemporal properties of the neurons
in the retino-cortical pathways. There has been an extensive literature regarding the
neuronal substrate of the CSF. It is now well accepted that the M cells provide
the neural basis of the luminance channel (Lee et al 1989; Shapley and Hawken 1999),
mediating most of the CSF to achromatic patterns (Kulikowski 1989), although the
opposing view that the P-cell channel could support luminance, at higher spatial frequen-
cies, had also been advanced (Derrington and Lennie 1984; Lennie and D’Zmura 1988;
Merigan and Maunsell 1993). This controversy is fully discussed in Plainis and Murray
(2000) and is the main topic for Lennie et al (1993).

Recently, simple reaction times (RTs) have been employed to derive achromatic
(Murray and Plainis 2003; Plainis and Murray 2000) and chromatic (McKeefry et al
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2003) CSFs, and Plainis and Murray (2000) have described a wide range of stimulus
characteristics in which the RT is a linear function of the reciprocal of contrast, so that

r:ro—l—kC”, )]

where 7 = reaction time, t, = the asymptotic reaction time, k = slope, C = contrast.
Effectively this means the exponent in Pieron’s famous reaction time equation is —1.
The advantage of using RTs is that sensitivity can be obtained over a range of supra-
threshold contrasts and thereby provide a direct measure of contrast gain. Using a
derivation of the well-known Naka—Rushton equation to obtain gains at high and low
contrasts, Murray and Plainis (2003) have described a biphasic relationship, revealing
the transition between two physiological mechanisms identified as reflecting M and P
pathways. Inevitably, this characteristic change in gain occurred only for low spatial
frequencies where, because of the high sensitivity, more than one mechanism operates
(see Appendix, figure Al). At high spatial frequencies and under low luminances the
biphasic function is replaced by a simple straight line. Although this was not the first
time the biphasic function for RT versus contrast had been described (see Harwerth
and Levi 1978; Parry 2001), the interpretation in terms of P and M pathways was novel.

In this paper we develop this interpretation of RT data further by comparing the
RT-based contrast gains obtained under conditions where it might be speculated that
either M or P pathways dominate detection. To make this comparison we have taken
the ratio of contrast gains obtained for M (low contrast range) and P (high contrast
range) dominated conditions for a range of spatial frequencies.

2 Methods

Two young subjects aged 29 (SP) and 23 (LG) participated in the experiments. Subjects
were optically corrected for the viewing distance with spectacles (corrected VA was
> 6/5) and viewed the stimuli through natural pupils and binocularly. Subjects were
familiarised with the range of conditions to be used in the experiment and were given
a block of practice trials prior to RT recording.

The stimuli were vertical sinusoidal gratings, modulated in luminance, and displayed
on a high-resolution monitor (for details, see Murray and Plainis 2003). Stimuli appeared/
disappeared with a square-wave temporal profile. Mean luminance was 20 cd m >
Contrast was defined as equal to the Michelson contrast. The test field was a circular
target subtending an angle of 7.13 deg. The minimum number of cycles presented on the
screen was 3.5 for the lowest spatial frequency used (0.49 cycle deg™).

RTs were determined with 1 ms resolution with a CED 1401 smart interface, linked
to a PC, and a purpose-designed computer program. Subjects were instructed to
respond by pressing a button, which triggered the CED 1401. A trial consisted of the
following sequence of events. A single warning tone was sounded. This was followed
by a random foreperiod varying from 1000 to 3000 ms prior to the presentation of
the target stimulus. If the subject did not respond, the next stimulus was presented
after 5000 ms. At the onset of the grating, a trigger probe was set which prompted the
CED 1401 to start its integral clock counter. This was terminated when the response
button was pressed. Only responses between 150 and 1000 ms were accepted; RTs over
600 ms were rarely encountered. When a grating was not present, the screen remained
blank, with the same space-averaged luminance as the stimulus.

Subjects fixated on a cross, located at the centre of the illuminated area of the screen,
for central viewing and on a series of red LEDs when eccentric viewing was tested.
RT data were collected for a range of contrasts from suprathreshold (0.5) to threshold
(Cy) detection. A block of about 28 -32 RTs was recorded for a single contrast level.
A series of spatial frequencies (0.49 to 17.7 cycles deg™") and eccentricities (0°, 5°, 10°, and 15°)
for both hemifields was tested. Stimulus duration varied between 20, 50, and 500 ms.
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3 Results

RT data for both subjects and all conditions were initially plotted as a function of
the reciprocal of contrast (C'). The resulting slopes revealed a linear relationship in
conditions where a single mechanism operating over the whole contrast range, and a
bi-linear function for conditions where sensitivity was high (an example of a bi-linear
function is given in the Appendix, figure Al; for the complete data see figures 3 and 4
in Murray and Plainis 2003). In the latter paper, the transition point between the two
segments occurred at around C = 0.1, indicating the presence of two distinct neural
mechanisms with different sensitivities (gains): a low-sensitivity P-dominated channel
at high contrasts and a high-sensitivity M-dominated channel at low contrasts (below
10%). In this paper, the RT contrast sensitivities of the two subserving neural mecha-
nisms, derived from the regression analysis of RT-contrast functions, as described in
the Appendix, are plotted for a range of stimulus conditions.

Figure 1 shows plots of the M-dominated and P-dominated RT-derived sensitivities
as a function of spatial frequency for three stimulus presentation times. It is clear that
when presentation time is long (500 ms), the sensitivity function of the M-dominated
channel shows a band-pass shape, resembling the characteristics of the sensitivity of
M neurons. On the other hand, the P-dominated channel exhibits a low-pass frequency
characteristic, which also holds for the P-pathway neurons. Moreover, for the longest
presentation used, the ratio of M over P sensitivity is maximal (between 5 and 10) for
middle spatial frequencies (~2—5 cycles deg™). The ratio between the two neural
mechanisms is reduced for the low and the higher spatial frequencies and for short
presentation times (20 and 50 ms). Higher spatial frequency gratings (>10 cycles
deg™") produce monotonic RT versus 1/C functions, resulting in a single slope of lower
contrast-gain characteristics (see Murray and Plainis 2003).

In figure 2, the RT contrast sensitivities for the two physiological channels are
plotted as a function of eccentricity for two spatial frequencies. Data from the left and
right hemifields are shown either side of zero eccentricity. As expected, sensitivity for
both P and M channels varies with eccentricity, reaching its peak at the fovea. The ratio
in sensitivity between M and P is fairly constant (< 5) across eccentricity for the lower
spatial frequency (0.49 cycle deg™') and is maximal (~ 10) at 0 deg for the higher spatial
frequency (5.57 cycles deg™).

4 Discussion

In this paper, we use a psychophysically derived measure of contrast gain, ie the RT
contrast sensitivity, to investigate the relative contribution of neural mechanisms at
suprathreshold contrasts. This metric, which is reciprocal to slopes of biphasic RT
versus C~' functions, has been shown to be similar to the physiological contrast gain
used to model the contrast response characteristics of neurons in the primary visual
pathway (Kaplan and Shapley 1986; Murray and Plainis 2003; Sclar et al 1990).

As highlighted in figure 1, the sensitivity of the M-dominated channel (derived
from the low-contrast segment of the RT versus C ' function) resembles the band-pass
characteristics of the individual M cells, but also the shape of the luminance CSF.
On the other hand, the P-dominated channel (derived from the high-contrast segment
of the RT versus C~' function) exhibits a low-pass function, which holds for chro-
matic modulation and the P cells. The other interesting observation is that the ratio in
sensitivity between the two channels (M/P) varies with spatial frequency and stimulus
presentation, in agreement with physiological findings.

Figure 1 indicates a maximal ratio (~10) for the middle (~2 to 5 cycles deg™)
spatial frequencies, when a 500 ms presentation stimulus (encouraging sustained mecha-
nisms) is used. This is not surprising, since it is known that human CSF peaks at the
same frequencies. It is believed that, when the sensitivity of the system is high, classes of
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Figure 1. Plots of the RT contrast sensitivity for the M-mediated (filled circles) and P-mediated
(open circles) channels as a function of spatial frequency, for a range of stimulus presentations
(20, 50, and 500 ms). Data from two subjects are shown. The lower part of each figure shows
the ratio M/P. Sensitivities were derived from the slopes of the low-contrast and high-contrast
segments of the RT versus 1/C functions (see Murray and Plainis 2003).

neurons having pure M and P inputs are activated, with the segregation of their responses
being very prominent. However, the use of a more transient stimulus (eg 20 ms dura-
tion) and/or low spatial frequencies, produces a less pronounced difference in contrast
sensitivity between the high-contrast and the low-contrast systems. It is possible that
low spatial frequencies activate a population of neurons that receive convergent inputs
from both M and P channels, thus producing a functional gradient for contrast gain.
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Figure 2. Plots of the RT contrast sensitivity of the M-mediated (filled circles) and P-mediated
(open circles) channels as a function of eccentricity for two spatial frequencies (0.49 cycle deg™',
upper panel; 5.57 cycles deg™', lower panel). Data from two subjects are shown. Stimulus presen-
tation was 500 ms. Sensitivities were derived from the slopes of the low-contrast and high-contrast
segments of the RT versus 1/C functions (see Murray and Plainis 2003).

This is consistent with recent anatomical physiological data which provide a substrate
of functional convergence of P and M cells in layer 4C of cortical area V1 (Bauer et al
1999; Lund et al 1995; Vidyasagar et al 2002).

As noted in Murray and Plainis (2003), higher spatial frequencies produce mono-
phasic suprathreshold functions. It has been postulated that high spatial-frequency
processing ( >10 cycles deg™') is probably subserved by a mechanism of higher spatial
resolution (but lower sensitivity), which can be achieved by the summation of the more
numerous P neurons (Kulikowski 1989). Probability summation may improve resolution,
but physiological data do not support the notion that P cell convergence could effec-
tively increase the sensitivity of the P system (Kaplan et al 1990). On the other hand,
spatial resolution of the M system is limited by the large receptive fields and the sparse
population of M neurons (Derrington and Lennie 1984). There is again a possibility
that high-spatial-frequency patterns are mediated by neurons located in the overlap
region of layer 4C, having both P-like and M-like spatiotemporal properties.

If we consider now the effect of eccentricity, we find that the reduction in RT
contrast sensitivity agrees with CSF findings. Croner and Kaplan (1995) showed that
the contrast gains of P and M cells are roughly constant across the macaque retina.
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This constancy is not obvious in threshold-based human psychophysical measurements,
which show decreased sensitivity in the peripheral retina (Mullen and Kingdom 2002;
Rovamo et al 1978). This may be due to the attenuation of contrast on the retina, as
more aberrations are introduced in the periphery by the optics of the eye (Atchison
and Scott 2002; Navarro et al 1998). However, it is now believed (Lee 2004) that
peripheral sensitivity is mainly affected by increased convergence of cones in peripheral
primate retina (Goodchild et al 1996) and the increased amount of cortical area devoted
to representing the periphery (Rovamo et al 1978). This means that the psychophys-
ical loss of sensitivity must have a central origin. Finally, RT-based measurements
are recorded at suprathreshold contrast levels, and may therefore be less susceptible to
these effects.

Although there is no direct evidence about the spatial frequency resolution of the
neural systems that support psychophysical tasks, such as reaction times to achromatic
patterns, it is highly likely that there are several spatiotemporal mechanisms involved.
The RT contrast sensitivity measure derived by reaction times is very helpful in under-
standing suprathreshold processing by linking psychophysical performance to neuronal
physiological properties. There is a strong indication that the M system is responsible
for close-to-threshold detection and probably forms the basis of the CSF, whereas
the P system takes over at suprathreshold contrast levels. It seems likely that another
mechanism with converging P and M inputs mediates detection when the sensitivity of
the system is low.
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Appendix A: The derivation of contrast gain from RT data
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Figure A1. RTs versus contrast (a) and the reciprocal of contrast (b) for spatial frequency
3.74 cycles deg™'. For these conditions (500 ms duration and 20 cd m™) a biphasic function is
revealed. The dashed lines in (a) are the best fits for equation (1) and in (b) the least-square-
regression fits for the low (0.1 to threshold) and high (0.5 to 0.1) contrast segments of the
curves. Solid lines are the best fits for all data points. The vertical solid line indicates C = 0.1.
Modified from Murray and Plainis (2003).

Appendix B: Derivation of RT contrast gain from the Naka — Rushton equation
Gain control in terms of the Naka—Rushton equation is typically expressed as:
CVI
Rmax arae
C"+ Cy,
where R. = response, R,,, = maximum (saturated) response, n = the exponent control-
ling the steepness of the contrast function, and Cs, = the semisaturating response.

If we take the reciprocal of reaction time (r) as a function of contrast and allow
this to be the response, then we can write:

R 1 _ 7,'C
(1 +ACTY) T (CH ket

which is the same form as equation (1). The slope of the Naka—Rushton function (2)
at contrast C is:

Re =

(BD)

B 75" ,'C
C CH k' CHkry'

and the slope at C =0 is

(0)

—1
To 51

= e

Thus, k' is an index of sensitivity (the gain) of the underlying detecting mechanism;
steep slopes indicate low gain and consequently low sensitivity, shallow slopes indicate
high gain (ie high sensitivity). Values of k' are plotted in figures 1 and 2 as RT contrast
sensitivity.
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